organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Basavegowda Nagaraj,^a Hemmige S. Yathirajan^a and Michael Bolte^b*

^aDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^bInstitut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-Curie-Straße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail: bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study T = 173 K Mean σ (C–C) = 0.002 Å R factor = 0.029 wR factor = 0.074 Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(3-Chloropropyl)-2,3-dihydro-1*H*-isoindole-1,3-dione

The geometric parameters of the title compound, $C_{11}H_{10}CINO_2$, are in the normal ranges. The phthalimide moiety is planar and the chloropropyl chain adopts a synclinal conformation. The crystal packing is stabilized by two intermolecular $C-H\cdots O$ contacts.

Received 23 February 2005 Accepted 2 March 2005 Online 11 March 2005

Comment

The title compound, (I), also named *N*-(3-chloropropyl)phthalimide, is used as an intermediate for the synthesis of biologically active heterocycles (Kerrigan *et al.*, 2000; Salvati *et al.*, 2005). In view of its importance and in order to determine the conformation of this molecule, a crystal structure determination has been carried out.

A perspective view of (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal [Cambridge Structural Database (CSD), Version 1.7; *MOGUL*, Version 1.0.1; Allen, 2002]. The isoindole-1,3-dione system is planar (r.m.s. deviation = 0.011 Å). Methylene atom C9 attached to the N atom deviates from this plane by only 0.031 (1) Å. The chloropropyl moiety adopts a synclinal conformation [Cl1-C11-C10-C9 = $-67.71 (12)^{\circ}$]. This conformation is also found for seven out of eight structures containing the Cl-CH₂CH₂CH₂-AA fragment (AA = any atom) retrieved from the CSD. The only

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved Perspective view of the title compound with the atom numbering; displacement ellipsoids are drawn at the 50% probability level.

structure not showing this conformation is 8-amino-7-(3-chloropropyl)theophylline benzene solvate, with a torsion angle of 175.8° (Karczmarzyk & Pawlowski, 1998). The – $CH_2CH_2CH_2-N$ chain, on the other hand, adopts an antiperiplanar conformation [C11-C10-C9-N1 = 177.15 (10)°]. The crystal packing is stabilized by two intermolecular C- $H\cdots$ O contacts (Table 2).

Experimental

A mixture of isoindole-1,3-dione (1.47 g, 10 mmol), anhydrous potassium carbonate (1.38 g, 10 mmol) and 1-bromo-3-chloropropane (1.57 g, 10 mmol) was stirred at room temperature in dimethylformamide (10 ml) for 6 h to give the title compound, which was recrystallized from methanol (m.p. 340 K).

Crystal data

 $C_{11}H_{10}CINO_2$ $M_r = 223.65$ Monoclinic, $P2_1/n$ a = 4.5421 (4) Å b = 15.3996 (15) Å c = 15.3471 (13) Å $\beta = 96.605$ (7)° V = 1066.35 (17) Å³ Z = 4

Data collection

Stoe IPDS-II two-circle diffractometer ω scans Absorption correction: multi-scan (*MULABS*; Spek, 2003; Blessing, 1995) $T_{\rm min} = 0.883, T_{\rm max} = 0.930$ 11 334 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.029$ $wR(F^2) = 0.074$ S = 1.062290 reflections 137 parameters H-atom parameters constrained $D_x = 1.393 \text{ Mg m}^{-3}$ Mo K α radiation Cell parameters from 29 481 reflections $\theta = 3.7-27.1^{\circ}$ $\mu = 0.34 \text{ mm}^{-1}$ T = 173 (2) K Rod, colourless $0.38 \times 0.22 \times 0.22 \text{ mm}$

2290 independent reflections 2103 reflections with $I > 2\sigma(I)$ $R_{int} = 0.033$ $\theta_{max} = 26.9^{\circ}$ $h = -5 \rightarrow 5$ $k = -19 \rightarrow 19$ $l = -19 \rightarrow 19$

$w = 1/[\sigma^2(F_o^2) + (0.0343P)^2]$
+ 0.3497P]
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.18 \text{ e} \text{ Å}^{-3}$
Extinction correction: SHELXL97
Extinction coefficient: 0.064 (5)

Table 1

Selected bond lengths (Å).

N1-C1	1.4001 (15)	C1-O1	1.2165 (14)
N1-C4	1.4015 (14)	C4-O2	1.2183 (15)
N1-C9	1.4660 (14)	C11-Cl1	1.8198 (13)

Table 2		
Hydrogen-bonding geometry	(Å,	°).

$D - H \cdots A$	<i>D</i> -H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$C11 - H11A \cdots O2^{i}$ $C11 - H11B \cdots O1^{ii}$	0.99 0.99	2.57 2.43	3.3251 (15) 3.2494 (15)	133 140
Summer at my and any (i) 1		. (;;) 2 1		

Symmetry codes: (i) $\frac{1}{2} + x, \frac{1}{2} - y, \frac{1}{2} + z$; (ii) 2 - x, 1 - y, 1 - z.

All H atoms were located in a difference map, but were then geometrically positioned and refined with fixed individual displacement parameters (set at 1.2 times $U_{\rm eq}$ of the parent atom) using a riding model, with C–H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively.

Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

- Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
- Karczmarzyk, Z. & Pawlowski, M. (1998). Pol. J. Chem. 72, 793-798.

Kerrigan, J. E., Walters, M. C., Forrester, K. J., Crowder, J. B. & Christopher, L. J. (2000). Bioorg. Med. Chem. Lett. 10, 27–30.

Salvati, M. E., Balog, A., Wei, D. D., Pickering, D., Attar, R. M., Geng, J., Rizzo, C. A., Hunt, J. T., Gottardis, M. M., Weinmann, R. & Martinez, R. (2005). *Bioorg. Med. Chem. Lett.* 15, 389–393.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.

Stoe & Cie (2001). X-AREA. Stoe & Cie, Darmstadt, Germany.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.