Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Basavegowda Nagaraj, ${ }^{\text {a }}$

Hemmige S. Yathirajan ${ }^{\text {a }}$ and Michael Bolte ${ }^{b_{*}}$
${ }^{\text {a }}$ Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ${ }^{\text {b }}$ Institut für Anorganische Chemie, J. W. Goethe-Universität Frankfurt, Marie-CurieStraße 11, 60439 Frankfurt/Main, Germany

Correspondence e-mail:
bolte@chemie.uni-frankfurt.de

Key indicators

Single-crystal X-ray study
$T=173 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.029$
$w R$ factor $=0.074$
Data-to-parameter ratio $=16.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

2-(3-Chloropropyl)-2,3-dihydro-1H-isoindole-1,3-dione

The geometric parameters of the title compound, $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{2}$, are in the normal ranges. The phthalimide moiety is planar and the chloropropyl chain adopts a synclinal conformation. The crystal packing is stabilized by two intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ contacts.

Comment

The title compound, (I), also named N-(3-chloropropyl)phthalimide, is used as an intermediate for the synthesis of biologically active heterocycles (Kerrigan et al., 2000; Salvati et al., 2005). In view of its importance and in order to determine the conformation of this molecule, a crystal structure determination has been carried out.

(I)

A perspective view of (I) is shown in Fig. 1. Bond lengths and angles can be regarded as normal [Cambridge Structural Database (CSD), Version 1.7; MOGUL, Version 1.0.1; Allen, 2002]. The isoindole-1,3-dione system is planar (r.m.s. deviation $=0.011 \AA$). Methylene atom C 9 attached to the N atom deviates from this plane by only 0.031 (1) \AA. The chloropropyl moiety adopts a synclinal conformation $[\mathrm{Cl} 1-\mathrm{C} 11-\mathrm{C} 10-$ $\left.\mathrm{C} 9=-67.71(12)^{\circ}\right]$. This conformation is also found for seven out of eight structures containing the $\mathrm{Cl}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-A A$ fragment $(A A=$ any atom $)$ retrieved from the CSD. The only

Perspective view of the title compound with the atom numbering; displacement ellipsoids are drawn at the 50% probability level.

Received 23 February 2005
Accepted 2 March 2005
Online 11 March 2005
structure not showing this conformation is 8-amino-7-(3chloropropyl)theophylline benzene solvate, with a torsion angle of 175.8° (Karczmarzyk \& Pawlowski, 1998). The $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{N}$ chain, on the other hand, adopts an antiperiplanar conformation $\left[\mathrm{C} 11-\mathrm{C} 10-\mathrm{C} 9-\mathrm{N} 1=177.15(10)^{\circ}\right]$. The crystal packing is stabilized by two intermolecular C $\mathrm{H} \cdots \mathrm{O}$ contacts (Table 2).

Experimental

A mixture of isoindole-1,3-dione ($1.47 \mathrm{~g}, 10 \mathrm{mmol}$), anhydrous potassium carbonate $(1.38 \mathrm{~g}, 10 \mathrm{mmol})$ and 1-bromo-3-chloropropane ($1.57 \mathrm{~g}, 10 \mathrm{mmol}$) was stirred at room temperature in dimethylformamide (10 ml) for 6 h to give the title compound, which was recrystallized from methanol (m.p. 340 K).

Crystal data

$\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{ClNO}_{2}$
$M_{r}=223.65$
Monoclinic, $P 2_{\mathrm{d}} / n$
$a=4.5421$ (4) A
$b=15.3996$ (15) A
$c=15.3471$ (13) A
$\beta=96.605(7)^{\circ}$
$V=1066.35(17) \AA^{3}$
$Z=4$

Data collection

Stoe IPDS-II two-circle diffractometer
ω scans
Absorption correction: multi-scan (MULABS; Spek, 2003;
Blessing, 1995)
$T_{\text {min }}=0.883, T_{\text {max }}=0.930$
11334 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.074$
$S=1.06$
2290 reflections
137 parameters
H -atom parameters constrained
$D_{x}=1.393 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 29481 reflections
$\theta=3.7-27.1^{\circ}$
$\mu=0.34 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Rod, colourless
$0.38 \times 0.22 \times 0.22 \mathrm{~mm}$

2290 independent reflections
2103 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=26.9^{\circ}$
$h=-5 \rightarrow 5$
$k=-19 \rightarrow 19$
$l=-19 \rightarrow 19$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0343 P)^{2}\right. \\
& +0.3497 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\text {max }}=0.24 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.18 \mathrm{e}^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \text { Extinction coefficient: } 0.064 \text { (5) }
\end{aligned}
$$

Table 1
Selected bond lengths (\AA).

$\mathrm{N} 1-\mathrm{C} 1$	$1.4001(15)$	$\mathrm{C} 1-\mathrm{O} 1$	$1.2165(14)$
$\mathrm{N} 1-\mathrm{C} 4$	$1.4015(14)$	$\mathrm{C} 4-\mathrm{O} 2$	$1.2183(15)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.4660(14)$	$\mathrm{C} 11-\mathrm{Cl} 1$	$1.8198(13)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 11-\mathrm{H} 11 A \cdots \mathrm{O} 2^{\mathrm{i}}$	0.99	2.57	$3.3251(15)$	133
$\mathrm{C} 11-\mathrm{H} 11 B \cdots 1^{1 i}$	0.99	2.43	$3.2494(15)$	140

Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}-y, \frac{1}{2}+z$; (ii) $2-x, 1-y, 1-z$.

All H atoms were located in a difference map, but were then geometrically positioned and refined with fixed individual displacement parameters (set at 1.2 times $U_{\text {eq }}$ of the parent atom) using a riding model, with $\mathrm{C}-\mathrm{H}=0.95$ and $0.99 \AA$ for aromatic and methylene H atoms, respectively.

Data collection: X-AREA (Stoe \& Cie, 2001); cell refinement: $X-A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON.

References

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Karczmarzyk, Z. \& Pawlowski, M. (1998). Pol. J. Chem. 72, 793-798.
Kerrigan, J. E., Walters, M. C., Forrester, K. J., Crowder, J. B. \& Christopher, L. J. (2000). Bioorg. Med. Chem. Lett. 10, 27-30.

Salvati, M. E., Balog, A., Wei, D. D., Pickering, D., Attar, R. M., Geng, J., Rizzo, C. A., Hunt, J. T., Gottardis, M. M., Weinmann, R. \& Martinez, R. (2005). Bioorg. Med. Chem. Lett. 15, 389-393.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Stoe \& Cie (2001). X-AREA. Stoe \& Cie, Darmstadt, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

